Application of Neural Networks to Modeling and Control of Parallel Manipulators

نویسنده

  • Ahmet Akbas
چکیده

There are mainly two types of the manipulators: serial manipulators and parallel manipulators. The serial manipulators are open-ended structures consisting of several links connected in series. Such a manipulator can be operated effectively in the whole volume of its working space. However, as the actuator in the base has to carry and move the whole manipulator with its links and actuators, it is very difficult to realize very fast and highly accurate motions by using such manipulators. As a consequence, there arise the problems of bad stiffness and reduced accuracy. Unlike serial manipulators their counterparts, parallel manipulators, are composed of multiple closed-loop chains driving the end-effector collectively in a parallel structure. They can take a large variety of form. However, most common form of the parallel manipulators is known as platform manipulators having architecture similar to that of flight simulators in which two special links can be distinguished, namely, the base and moving platform. They have better positioning accuracy, higher stiffness and higher load capacity, since the overall load on the system is distributed among the actuators. The most important advantage of parallel manipulators is certainly the possibility of keeping all their actuators fixed to base. Consequently, the moving mass can be much higher and this type of manipulators can perform fast movements. However, contrary to this situation, their working spaces are considerably small, limiting the full exploitation of these predominant features (Angeles, 2007). Furthermore, for the fast and accurate movements of parallel manipulators it is required a perfect control of the actuators. To minimize the tracking errors, dynamical forces need to be compensated by the controller. In order to perform a precise compensation, the parameters of the manipulator’s dynamic model must be known precisely. However, the closed mechanical chains make the dynamics of parallel manipulators highly complex and the dynamic models of them highly non-linear. So that, while some of the parameters, such as masses, can be determined, the others, particularly the firiction coefficients, can’t be determined exactly. Because of that, many of the control methods are not efficient satisfactorly. In addition, it is more difficult to investigate the stability of the control methods for such type manipulators (Fang et al., 2000). Under these conditions of uncertainty, a way to identify the dynamic model parameters of parallel manipulators is to use a non-linear adaptive control algorithm. Such an algorithm

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Sensitivity to Inputs and Weights and its Application to Functional Identification of Robotics Manipulators

Neural networks are applied to the system identification problems using adaptive algorithms for either parameter or functional estimation of dynamic systems. In this paper the neural networks' sensitivity to input values and connections' weights, is studied. The Reduction-Sigmoid-Amplification (RSA) neurons are introduced and four different models of neural network architecture are proposed and...

متن کامل

Saturated Neural Adaptive Robust Output Feedback Control of Robot Manipulators:An Experimental Comparative Study

In this study, an observer-based tracking controller is proposed and evaluatedexperimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturationin the presence of model uncertainties and external disturbances. In comparison with the state-of-the-artobserver-based controllers in the literature, this paper introduces a saturated observer-based controllerbas...

متن کامل

Trajectory Optimization of Cable Parallel Manipulators in Point-to-Point Motion

Planning robot trajectory is a complex task that plays a significant role in design and application of robots in task space. The problem is formulated as a trajectory optimization problem which is fundamentally a constrained nonlinear optimization problem. Open-loop optimal control method is proposed as an approach for trajectory optimization of cable parallel manipulator for a given two-end-po...

متن کامل

Inverse Dynamics Control of Flexible-Link Manipulators using Neural Networks

Title Type control of flexible link manipulators using neural networks PDF control of flexible link manipulators using neural networks 1st edition PDF control of robot manipulators in joint space advanced textbooks in control and signal processing PDF constructive neural networks PDF digital neural networks PDF complex valued neural networks PDF control of redundant robot manipulators theory an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012